
LLNL-JRNL-408313

Genetic noise control via protein
oligomerization

C.-M. Ghim, E. Almaas

October 31, 2008

BMC Systems Biology



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Genetic noise control via protein oligomerization

Cheol-Min Ghim and Eivind Almaas∗

Microbial Systems Biology Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East

Avenue Livermore, CA 94550, USA

Email: C.-M. Ghim - cmghim@llnl.gov; E. Almaas - almaas@llnl.gov;

∗Corresponding author

Abstract

Background: Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus,
molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit
to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction
networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-
protein associations.

Results: We have developed a fully stochastic model for the positive feedback control of a single gene, as well
as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies.
In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the
promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content
of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of
protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists
throughout the multiple model toplogies considered. For the toggle switch, we additionally find that the presence
of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence,
the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from
randomly being induced (uninduced).

Conclusions: The specific binding between regulatory proteins provides a buffer that may prevent the propagation
of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation
rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it
provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important
toggle switches, and nested positive feedback loops in general, is of direct implications to organism fitness.
Finally, noise control through oligomerization suggests avenues for the design of robust synthetic gene circuits for
engineering purposes.

Background

Recent experiments on isogenic populations of mi-
crobes with single-cell resolution [1–3] have demon-

strated that stochastic fluctuations, or noise, can
override genetic and environmental determinism. In
fact, the presence of noise may significantly affect the
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fitness of an organism [4]. The traditional approach
for modeling the process of molecular synthesis and
degradation inside a cell is by deterministic rate
equations, where the continuous change of arbitrar-
ily small fractions of molecules is controlled instan-
taneously and frequently represented through sig-
moidal dose-response relations. However, the rate-
equation approaches can not explain the observed
phenotypic variability in an isogenic population in
stable environments. In particular, when molecules
involved in feedback control exist in low copy num-
bers, noise may give rise to significant cell-to-cell
variation as many regulatory events are triggered by
molecules with very low copy numbers . 100 [5]. A
well known example is the regulation of inorganic
trace elements [6], such as iron, copper, and zinc.
While these trace elements are essential for the activ-
ity of multiple enzymes, their presence may quickly
turn cytotoxic unless their concentrations are care-
fully controlled.

Although the presence of phenotypic variation
due to stochastic fluctuations need not be detrimen-
tal for a population of cells [7], elaborate regula-
tory mechanisms have evolved to control the effects
of noise. Several systems-biology studies have re-
cently focused on a select set gene-regulatory cir-
cuits, in particular those with feedback control.
Feedback control circuits have been identified as im-
portant for multiple species and proven responsible
for noise reduction and increased functional stabil-
ity in many housekeeping genes through negative au-
toregulation [8], long cascades of ultrasensitive sig-
naling [9], bacterial chemotaxis [10], and the circa-
dian clock [11]. Additionally, recent studies on iron
homeostasis [12, 13] in E. coli highlight the noise-
reducing capability mediated by small RNAs.

Here, we study the stabilizing effect on noisy
positive-feedback circuits (PFCs) by the presence
of oligomerized transcription factors. We have ana-
lyzed the effect of protein oligomerization on noise in
positive-feedback autoregulatory circuits as well as
a simple toggle-switch [14]. The all-or-none thresh-
old behavior of PFCs typically improves robustness
against “leaky” switching. However, due to their
functional purpose, gene circuits involved in devel-
opmental processes or stress responses that often ac-
company genome-wide changes in gene expression
are intrinsically more noisy than basic negative feed-
back circuits.

It is frequently observed that transcription fac-
tors exist in oligomeric form [15], and protein

oligomerization is an important subset of protein-
protein interactions, costituting a recurring theme
in enzymatic proteins as well as regulatory proteins.
Well studied examples include the λ-phage repressor,
λCI (dimer), the TrpR (dimer), LacR (tetramer),
and Lrp (hexadecamer or octamer). While many
of the RNA-binding proteins dimerize exclusively in
the cytosol, the LexA repressor [16], the leucine-
zipper activator [17, 18], and the Arc repressor [19]
have been shown to form an oligomer either in the
cytosol (“dimer path”) or on the DNA by sequential
binding (“monomer path”). Previously, the efficacy
of monomer and dimer transription-regulation paths
to reduce noise was separately studied for a negative-
feedback autoregulatory circuit [20]. In contrast, we
have focused on oligomerization in positive-feedback
autoregulatory circuits, as well as a simple positive-
feedback toggle-switch [?]. We find that cytosolic
transcription-factor oligomerization acts as a sig-
nificant buffer for abundance-fluctuations in the
monomer, overall reducing noise in the circuit. Ad-
ditionally, the noise-power spectral density is shifted
from the low- to the high-frequency regime. In the
toggle switch, cytosolic oligomerization in the tran-
scription factor may significantly stabilize the func-
tional state of the circuit.

Although our modeling and analysis is based on
prokaryotic cells, we expect our main findings to
be organism-independet since protein oligomers, es-
pecially homodimers, is such a common occurrence
across the species [21], with homodimers comprising
12.6% of the high-fidelity human proteome [22,23].

Results and Discussion

Dimerization breaks long-time noise correlations

in autogenous circuit

To evaluate the dynamic effects of protein-protein
binding in positive-autoregulation gene circuits, we
construct several alternative models of positive auto-
genous circuits. Each model emphasizes a different
combination of possible feedback mechanisms, and
the network topologies considered can be grouped
into the two classes of monomer-only (MO) and
dimer-allowed (DA) circuits, according to the avail-
ability of a protein-dimer state (Fig. 1). We fur-
ther group the DA circuits into three variations, DA1
through DA3, depending on which form of the pro-
tein is the functional transcription factor (TF) and
where the dimerization occurs. For DA1, we only
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allow the dimer to bind with the DNA-operator se-
quence, while for DA2 dimerization occurs through
sequential binding of monomers on the DNA. In
DA3, the protein-DNA binding kinetics are the same
as in the MO circuit with the addition of dimer-
ization in the cytosol. While we will only present
results for DA1 in this paper, there is no significant
difference for DA2 and DA3 (see Supplementary Ma-

terial).

Note that the feedback loop (the auto-regulation)
that is implicit in Fig. 1 is included through the de-
pendence of the RNAp-DNA binding rates on the
presence or absence of the protein (TF)-operator
complex. The sign (positive or negative) of the feed-
back is a consquence of the relative binding strength
between DNA and RNAp in the presence and ab-
sence of the transcription-factor-operator complex.
For instance, if K30 = k30/q30 > K32 = k31/q31,
the control is that of positive feedback. For each
topology, we study the dependence of noise charac-
teristics on the kinetic rates by varying the dimer
half-life, binding affinity, and the individual associ-
ation/dissociation rates. While we only discuss pos-
itive feedback control of the autogenous circuit in
this paper, we have obtained corresponding results
for negative feedback control.

Figure 2 shows a sample of ten representative
time courses for the protein abundance using the
DA1 topology. The effect of stochastic fluctuations
is marked in the MO circuit. However, in all the
DA circuits where the protein may form a cytoso-
lic dimer we observe a significantly reduced noise
level for the monomer abundance. The suppression
of fluctuations persists throughout the range of ki-
netic parameters that (so far) is known to be physi-
ologically relevant (Table 1).

Calculating the steady-state distribution for the
monomer and dimer abundances (Fig. 3) we ob-
serve a clear trend that the monomer Fano factor
(ν = σ2/µ) is reduced as the binding equilibrium is
shifted towards the dimer. This trend is conserved
for all the investigated DA topologies (see Supple-

mentary Information for other circuit topologies).
As long as dimerization is allowed in the cytosol,
the fast-binding equilibrium absorbs long-time fluc-
tuations stemming from bursty synthesis or decay of
the monomer. When a random fluctuation brings
about a sudden change in the monomer copy num-
ber, dimerization provides a buffering pool that ab-
sorbs the sudden change. Otherwise, random bursts
in the monomer abundance will propagate to the

transcriptional activity of the promoter, leading to
erratic control of protein expression. It should be
emphasized that this has nothing to do with the sign
of regulation and is in agreement with the observa-
tions of Ref. [20] for negative autoregulation. Sur-
prisingly, the magnitude of noise reduction in the
positive autoregulatory circuit is nearly the same as
that for negative autoregulation which is typically
considered a highly stable construct (see Supplemen-

tary Information).
A heuristic explanation is given by the linear re-

sponse theory of dynamical system, which is justi-
fied for small perturbations around a steady state.
When a random fluctuation shifts the monomer copy
number away from its steady-state value, the decay
toward the steady state can be described by the sys-
tem Jacobian. The disparity in the magnitude of
the (negative) eigenvalues of the Jacobian matrix for
the MO versus the DA circuits signifies the fact that
the perturbed state is buffered by fast settlement of
the monomer-dimer equilibrium before random fluc-
tuation can accumulate, possibly with catastrophic
physiological effects. This explains the coarse long-
time patterns observed in MO model in contrast with
the DA circuits (Fig. 2).

Frequency-selective whitening of Brownian noise

Dimerization process itself generates stochastic fluc-
tuations on a short time scale. However, since
this time scale is essentially separated from that
of monomer synthesis and decay, dimerization ef-
fectively mitigates the monomer-level fluctuations.
The frequency content of the fluctuations is best
studied by an analysis of the power spectral density
(PSD), the original introduced of for signal process-
ing. Fig. 4 shows the noise power spectra of DA1,
and the distinction between the MO circuit and the
DA topologies is immediately evident. In particular,
we note the following two features. (i) A power-law
decay with increasing frequency and (ii) a horizontal
plateau for the DA circuits. The power-law feature
is explained by the “random walk” nature of protein
synthesis and decay: The power-law exponent is ap-
proximately 2, which is in agreement with a Brow-
nian noise process. Compared to other commonly
observed signals, such as white (uncorrelated) noise
or 1/f noise, protein synthesis/decay has a longer
correlation time. If the autocorrelation function of a
time course is characterized by a single exponential
decay, as is the case for Brownian noise, the Fourier

3



transform (PSD) is given by Lorentzian profile, thus
well approximated by an inverse-square law in the
low-frequency regime. We do not observe a satura-
tion value for the MO circuit, and it is likely not in
the frequency window of physilogical interest. This
may especially be the case when correlation times
are long.

The noise reduction is in the physiologically rele-
vant low-frequency regime, and in Fig. 4 we have in-
dicated the typical values for a cell cycle and mRNA
half-life. Although stochastic fluctuations impose a
fundamental limit in cellular information processing,
multiple noise sources may affect cellular physiology
non-additively. For a living cell, fluctuations are es-
pecially relevant when their correlation time is com-
parable to, or longer than, the cell cycle. At the
same time, short-time scale fluctuations (relative to
the cell cycle) are more easily attenuated or do not
propagate [24]. Additionally, the observed flat re-
gion in the PSD of the DA circuits implies that as far
as mid-range frequency fluctuations are concerned,
we can safely approximate them as a white noise.
This insight may shed light on the reliability of ap-
proximation schemes for effetive stochastic dynamcis
in protein-only models.

Increased half-life of dimer plays an important role

The virtue of the cytosolic dimer state is also directly
related to the extended half-life of proteins when in
a complex. Except for the degradation tagging for
active proteolysis, a much slower turnover of protein
oligomers is the norm. This is partly explained by
the common observation that monomers have largely
unfolded structures, which are prone to be target of
proteolysis [25]. It has also been pointed out that
the prolonged half-life of the oligomeric form is a
critical factor for enhancing the feasible parameter
ranges of gene circuits [26]. As seen from Fig. 3
(also Table ), the fold change of the noise reduction,
while still significant, is not as strong for the (hy-
pothetical) case of dimer half-life being the same as
that of the monomer (γ2/γ1 = 1/2). However, the
low-frequency power spectra still exhibit almost an
order-of-magnitude smaller noise power than in the
MO circuit with the same rate parameters (Fig. 4).
Hence, the noise reduction capability holds good as
as long as the dimer half-life is kept sufficiently long
compared with the monomer-dimer transition.

Effects of homo-dimerization in genetic toggle

switch

The exceptionally stable lysogeny of the phage λ, for
which the spontaneous loss rate is . 10−7 per cell
per generation [27, 28], has motivated the synthe-
sis of a genetic toggle switch [14] constructed from
a pair of genes, which we will denote genes A and
B, that transcriptionally repress each other’s expres-
sion. This mutual negative regulation, in effect, cre-
ates a positive feedback loop for each of the genes
and provides the basis for the multiple steady states
of the toggle. The existence of multistability, in turn,
may be exploited as a device for epigenetic memory
or for decision making [?]. As the general attributes
of positive feedback suggest, a genetic toggle switch
responds to external cues in an ultrasensitive way:
When the strength of a signal approaches the thresh-
old value, the gene expression state can be reversed
by a small change in the signal. For example, the
concentration of protein A (B) may rapidly switch
from high (low) to low (high). However, the flip-side
of ultrasensitivity is vulnerability to random fluctu-
ations near the threshold.

In a simple model, the monomer-only (MO) tog-
gle, regulatory proteins only exist in monomeric
form. Although an external signal is not explic-
itly included, random fluctuations in the abundance
of the circuit’s molecular components will occasion-
ally flip the toggle-state for the two protein species.
Drawing on the results from our analysis of pos-
itive autoregulatory gene circuits, we hypothesize
that dimerization in the regulatory proteins of the
toggle switch will serve to stabilize its preformance
against noise. We allow the protein products of
each gene to form a homodimer, being either AA
or BB, which is similar to the CI-Cro system in
phage λ [29]. We evaluate the effect of the fast
protein binding-unbinding dynamics on the toggle
switch performance by using either (i) the monomers
or (ii) the homodimers as the functional form of the
repressor. Figure 5 shows representative time series
of the protein monomer (left) and dimer abundances
(right) for the case of (a) monomers or (b) dimers
as the repressor molecule using several values of the
dimer binding affinity K1.

When the monomer corresponds to the func-
tional form of the repressor molecule (Fig. 5(a)) and
K1 is large (limit of low dimer affinity), the protein
populations are dominated by monomers. Hence,
the circuit effectively behaves as an MO toggle. As
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K1 decreases, we see that the level of random switch-
ing is suppressed: Analogous to the autogenous cir-
cuit, the dimer pool stabilizes the protein monomer
population. However, the noise suppression is not
monotonic with increasing dimer binding affinity.
Indeed, for very large binding affinities (small K1),
the number of random switching events is increased
since the monomer is only available in low copy num-
bers. Consequently in this limit, it becomes more
likely that a small fluctuation in the monomer abun-
dance can cause a dramatic change in the overall
gene expression profile.

The possible noise-stabilizing effect of dimeriza-
tion is also reflected in the corresponding PSDs
(see Supplementary Information). We observe a
marked suppression of low-frequency fluctuations in
the monomer abundance with increasing K1, as well
as a decrease in the high-frequency fluctuations in
the dimer abundance with decreasing K1. This last
observation is in contrast with the PSDs for the au-
togenic circuit (see Fig. 4), where the PSD is mostly
independent of the dimer-binding affinity.

In Fig. 5(b) we show corresponding sample time
series for the case of a dimeric repressor, all other
properties being the same as in (a). While the over-
all trends are similar, we do note the following dif-
ference. Contrary to the monomeric repressor case,
there are very few toggle events in the strong bind-
ing limit: Since the signaling molecules (dimers) of
the dominant gene (the “on”-gene) tend to exist in
large copy numbers, a significant fluctation is needed
to flip the state of the toggle switch. In the case
of monomeric repression, the signaling molecule ex-
ists in low abundance in this limit. Thus, the domi-
nant protein species in the dimeric-repressor system
is able to maintain much better control over the state
of the toggle switch.

In Figure 6, we show the distribution of (NA −
NB), the difference in molecule abundance for the
two protein species in the case of monomeric (left)
and dimeric transcription factor (right). The asym-
metry with respect to the zero axis is caused by
our choice of initial conditions (protein species A
in high concentration and species B in low concen-
tration), as well as the finite length of the time se-
ries. For monomeric transcription, the presence of
dimers with moderate binding affinity sharpens the
monomer abundance distribution while accentuating
its bimodal character. This is in agreement with the
qualitative observation from Figure 5 on switching
stability. For dimeric transcription, we clearly ob-

serve that the symmetry of the system is broken for
small values of K1, indicating that the state of the
toggle switch is extremely stable, and hence, likely
determined by the choice of the initial conditions.

To systematically quantify our observations on
the interplay between dimer-binding affinity and the
functional stability of the toggle switch, we gener-
ated long time series (≈ 3.15 · 107 sec) to measure
the average spontaneous switching rate. In Fig-
ure 7, we show the average toggle frequency rela-
tive to that of the MO toggle for the binding affini-
ties K1 = {2, 20, 100, 1000}, and the average MO
switching rate is x · 10−6. As expected, we find that
intermediate values of K1 are able to stabilize the
toggle switch. Figure 7 also highlights the increased
stability of the toggle switch for a dimeric versus
monomeric transcription factor, the dimeric switch-
ing rates always being lower and approaching zero
for strong dimer binding.

Heterodimerization in genetic toggle switch

We have also considered the case of heterodimeriza-
tion in the toggle switch, since the noise- and func-
tional stabilization of the switch may be directly af-
fected by the composition and source of the dimers.
Note that, the gene-regulation activity is conferred
by the two monomer proteins A and B and not the
heterodimer AB. However, we find that the (in-
active) heterodimers give rise to very similar noise-
stabilizing effects as that of homodimers (Fig. 7). In
fact, since the heterodimer state allows the dominant
protein species to suppress the (active) monomers
of the other protein, the heterodimer toggle switch
demonstrates a functional stability similar to the
case of homodimeric repressors, and thus, not shar-
ing the discussed vulnerability of monomeric repres-
sor toggle. Although, to our knowledge, this is a
purely hypothetical toggle-switch design, it provides
a general strategy for noise control in synthetic gene
circuits, along with previously proposed approach of
overlapping upstream regulatory domains [30].

Conclusions

Cells have evolved distinct strategies to combat the
fundamental limits imposed by intrinsic and envi-
ronmental fluctuations. Recent efforts to correlate
network structure with functional aspects may pro-
vide valuable insights into approaches for network-
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level noise control [31]. While negative feedback is
one of the most abundantly observed patterns to
achieve the goal of stability, it begs the question
fo how cells reliably change the expression of genes
from one state to another. The ultrasensitive re-
sponse circuit, exemplified by the ubiquitous signal
transduction cascades in eukaryotic cells, has been
proposed as an answer to this question [32,33].

In addition to the combinatorial expansion of
functional specificity, we argue that the availabil-
ity of oligomeric states contributes to the attenu-
ation of stochastic fluctuations in protein abundace.
In positive autoregulatory gene circuits, where the
abundance of an expressed protein controls its own
synthesis rate, dimerization provides a buffer serving
to mitigate random fluctuations associated with the
bursty transcription-translation process. We find
that, in the frequency domain, short-time binding-
unbinding dynamics reduce the overall noise level
by converting potentially pathological low-frequency
noise to physiologically unimportant, and easily at-
tenuated, high-frequency noise.

Applying this insight to the design of a ge-
netic toggle switch demonstrates the potential use
of affinity-manipulation for synthetic biology, where
the construction of noise-resistant gene circuits is
of eminent importance. In practice, small ligand
molecules may be employed to regulate the bind-
ing affinity of the regulatory proteins, being either
monomers or dimers. Our results further suggest
that the structure of the protein-interaction net-
work [?] may provide important insights on meth-
ods for genome-level noise control in synthetic and
natural systems.

Methods

Model construction

To evaluate the general role of protein oligomeriza-
tion in a broader functional context, we studied the
two most common motifs found in genetic regulatory
circuits: positive autoregulation and the bistable
switch. We employed the Gillespie algorithm [34]
to perform exact stochastic simulations. The reac-
tion scheme studied is summarized in Fig. 1, where
the binding/unbinding reactions between RNAp and
promoter or between TF and operator are made ex-
plicit. Note that, neither binding equilibrium nor
empirical Hill-type cooperativity is assumed ad hoc.
In particular, we split the lumped transcription pro-

cess into two separate events, (i) isomerization of
closed RNAp-promoter complex to its open form and
(ii) transcription elongation followed by termination.
This is to reflect the availability of the free promoter
while the transcription machinery proceeds along the
coding sequence of a gene as soon as the promoter re-
gion is cleared of the RNAp holoenzyme. Otherwise,
the promoter would be inaccessible during a whole
transcription event, altering the random mRNA syn-
thesis dynamics.

To realize the genetic switches in a stochastic set-
ting, we keep track of the microscopic origin of co-
operativity that gives rise to the multistability by
employing (i) multiple operator sites which have the
same binding affinity with the repressor, and (ii)
formation of dimers (a) between the two repressor
proteins (heterodimers), and (b) separately for the
repressor proteins (homodimers).

Stochastic simulation

We used the Gillespie direct [34] and Next Reaction
(Gibson-Bruck) [35] algorithms, both based on the
exact chemical master equation. The Dizzy pack-
age [36] were used as the core engine of the simula-
tons. To ensure that calculations were undertaken
in a steady state, we preran a deterministic solver
to get the stationary configurations and used them
as initial condition of stochastic simulations. For
each model system, we generated 105 ensemble runs
with identical initial conditions and used the instan-
taneous protein copy number at a fixed time point
t = 5000 sec. To achieve high-quality power spectra
in the low- and high-frequency limits, we ran time
courses (∼ 105 sec) with higher sampling frequency
(20 measure points per second).

To calculate the average switching rate, we gener-
ated time series of minimum lenght 3.15·107 sec (cor-
responding to 1 year). We identify a state change
in the toggle switch by monitoring the ratio of the
monomer and dimer abundance for the two protein
species. In order to avoid counting short-time fluctu-
ations that do not correspond to a prolonged change
of the toggle state, we a applied sliding-window av-
erage using a window size of 1000 sec to the time
series.
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8. Thieffry D, Huerta A, Pérez-Rueda E, Collado-Vides
J: regulation in Escherichia coli. BioEssays 1998,
20:433–440.

9. Thattai M, van Oudenaarden A: Attenuation of Noise
in Ultrasensitive Signaling Cascades. Biophys. J.
2002, 82(6):2943–2950.

10. Yi T, Huang Y, Simon M, Doyle J: Robust perfect
adaptation in bacterial chemotaxis through in-
tegral feedback control. Proceedings of the National
Academy of Sciences 2000, 97(9):4649.

11. Vilar J, Kueh H, Barkai N, Leibler S: Mechanisms of
noise-resistance in genetic oscillators. Proceedings
of the National Academy of Sciences 2002, 99(9):5988.

12. Semsey S, Andersson A, Krishna S, Jensen M, Masse
E, Sneppen K: Genetic regulation of fluxes: iron
homeostasis of Escherichia coli. Nucleic Acids Re-
search 2006, 34(17):4960.

13. Levine E, Zhang Z, Kuhlman T, Hwa T: Quantita-
tive Characteristics of Gene Regulation by Small
RNA. PLoS Biol 2007, 5(9):e229.

14. Gardner T, Cantor C, Collins J: Construction of a ge-
netic toggle switch in Escherichia coli. Nature 2000,
403(6767):339–42.

15. Beckett D: Regulated assembly of transcription fac-
tors and control of transcription initiation. Journal
of Molecular Biology 2001, 314(3):335–352.

16. Kim B, Little J: Dimerization of a specific DNA-
binding protein on the DNA. Science 1992,
255(5041):203–206.

17. Berger C, Piubelli L, Haditsch U, Bosshard H: Diffusion-
controlled DNA recognition by an unfolded,
monomeric bZIP transcription factor. FEBS Let-
ters 1998, 425:14–18.

18. Kohler J, Metallo S, Schneider T, Schepartz A: DNA
specificity enhanced by sequential binding of pro-
tein monomers. Proceedings of the National Academy
of Sciences 1999, 96(21):11735–11739.

19. Rentzeperis D, Jonsson T, Sauer R: Acceleration of
the refolding of Arc repressor by nucleic acids
and other polyanions. Nature Structural Biology 1999,
6:569–573.

20. Bundschuh R, Hayot F, Jayaprakash C: The Role of
Dimerization in Noise Reduction of Simple Ge-
netic Networks. Journal of Theoretical Biology 2003,
220(2):261–269.

21. Ispolatov I, Yuryev A, Mazo I, Maslov S: Binding prop-
erties and evolution of homodimers in protein–
protein interaction networks. Nucleic Acids Research
2005, 33(11):3629–3635.

22. Ramirez F, Schlicker A, Assenov Y, Lengauer T, Albrecht
M: Computational analysis of human protein in-
teraction networks. Proteomics 2007, 7:2541–2552.

23. McDermott J, Bumgarner R, Samudrala R: Functional
annotation from predicted protein interaction
networks. Bioinformatics 2005, 21(15):3217–3226.

24. Tan C, Reza F, You L: Noise-limited frequency sig-
nal transmission in gene circuits. Biophysical Jour-
nal 2007, 93:3753–3761.

25. Herman C, Prakash S, Lu C, Matouschek A, Gross C:
Lack of a Robust Unfoldase Activity Confers a
Unique Level of Substrate Specificity to the Uni-
versal AAA Protease FtsH. Molecular Cell 2003,
11(3):659–669.

26. Buchler N, Gerland U, Hwa T: Nonlinear Protein
Degradation and the Function of Genetic Circuits.
Proc Natl Acad Sci USA 2005, 102(27):9559–9564.

27. Rozanov D, D’Ari R, Sineoky S: RecA-independent
pathways of lambdoid prophage induction in
Escherichia coli. Journal of Bacteriology 1998,
180(23):6306–6315.

28. Little J, Shepley D, Wert D: Robustness of a gene
regulatory circuit. The EMBO Journal 1999, 18:4299–
4307.

29. Ptashne M: A Genetic Switch: Gene Control and Phage
λ. Cambridge, MA 1986.

7



30. Warren P, ten Wolde P: Enhancement of the stabil-
ity of genetic switches by overlapping upstream
regulatory domains. Physical Review Letters 2004,
92(12):128101.

31. Barabasi A, Oltvai Z: Network biology: understand-
ing the cell’s functional organization. Nature Re-
views Genetics 2004, 5(2):101–113.

32. Goldbeter A, Koshland D: An Amplified Sensitivity
Arising from Covalent Modification in Biological
Systems. Proceedings of the National Academy of Sci-
ences of the United States of America 1981, 78(11):6840–
6844.

33. Huang C, Ferrell Jr J: Ultrasensitivity in the
mitogen-activated protein kinase cascade. Proc
Natl Acad Sci US A 1996, 93(19):10078–83.

34. Gillespie D: Exact stochastic simulation of coupled
chemical reactions. The Journal of Physical Chemistry
1977, 81(25):2340–2361.

35. Gibson M, Bruck J: Efficient exact stochastic simu-
lation of chemical systems with many species and
many channels. Journal of Physical Chemistry A 2000,
104(9):1876–1889.

36. Ramsey S, Orrell D, Bolouri H: Dizzy: stochastic sim-
ulation of large-scale genetic regulatory networks.
J Bioinform Comput Biol 2005, 3(2):415–436.

37. Sauer R: Molecular characterization of the[lambda]
repressor and its gene[c] I. PhD thesis, to: Dept.
of Biochemistry and Molecular Biology.advisor: Mark
Ptashne.Harvard University 1979.

38. Arkin A, Ross J, McAdams H: Stochastic Kinetic
Analysis of Developmental Pathway Bifurcation

in Phage λ-Infected Escherichia coli Cells. Genet-
ics 1998, 149(4):1633–1648.

39. Ackers G, Johnson A, Shea M: Quantitative model for
gene regulation by lambda phage repressor. Proc
Natl Acad Sci USA 1982, 79(4):1129.

40. Hawley D, McClure W: Mechanism of activation of
transcription initiation from the lambda PRM
promoter. J Mol Biol 1982, 157(3):493–525.

41. Hawley D, Johnson A, McClure W: Functional and
physical characterization of transcription initi-
ation complexes in the bacteriophage lambda
OR region. Journal of Biological Chemistry 1985,
260(14):8618–8626.

42. POLYMERASE R, LOCATION P: RNA Polymerase-
Promoter Interactions: the Comings and Goings
of RNA Polymerase. J Bacteriol 1998, 180(12):3019–
3025.

43. Ujvari A, Martin C: Thermodynamic and kinetic
measurements of promoter binding by T7 RNA
polymerase. Biochemistry 1996, 35(46):14574–14582.

44. Shea M, Ackers G: The OR control system of bacte-
riophage lambda. A physical-chemical model for
gene regulation. J Mol Biol 1985, 181(2):211–30.

45. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Wal-
ter P: Molecular biology of the cell (4th Ed.). Garland
Science. New York. US 2002.

46. Lewin B: Genes VIII. Pearson Prentice Halll Upper Sad-
dle River, NJ 2004.

8



Figure 1, Ghim & Almaas
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Figure 1: Schematic of model autoregulation gene circuit. (a) The DNA binding status is indicated by
Dxy, where x corresponds to the operator region (empty=0, monomer=1, dimer=2), and y to the promoter
region (empty=0, RNA polymerase bound=1). C represents the open complex of DNA-RNAp holoenzyme
with the promoter sequence just cleared of RNAp and is subject to transcription elongation. Finally, M, P1
and P2 correspond to mRNA, protein monomer, and dimer, respectively. The network topologies can be
grouped into two classes, monomer-only (MO) or dimer-allowed (DA) circuits. We have studied DA1 (red
lines), which only allows the dimer to bind with the DNA-operator sequence, DA2 (green) with sequential
binding of monomers on the DNA, and DA3 (blue), which shares protein-DNA binding kinetics with MO
while allowing dimerization in the cytosol. (b) We have investigated the combination of the listed model
components assuming cells in the exponential growth phase and the number of RNAp (R) constant.
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Figure 2, Ghim & Almaas
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Figure 2: Ten independent time courses of the abundance of protein monomers in the (positive) autoreg-
ulatory circuit. The availability of a cytosolic dimer state (red, using circuit topology DA1) significantly
reduces the copy-number fluctuations of the monomer compared to the monomer-only (MO) circuit (blue).
All corresponding MO and DA1 parameters have the same values.
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Figure 3, Ghim & Almaas

Figure 3: Stationary state distribution of monomer (black) and dimer (orange) protein abundance in the
positive autogenous circuit. The left (right) column corresponds to a dimer to monomer dissociation ratio
of γ2/γ1 = 1/10 (γ2/γ1 = 1/2). The molecular copy numbers are collected at a fixed time inverval (5 · 103

sec) after the steady state has been reached. As the binding equilibrium is shifted towards the dimer state
(decreasing K1), the noise level is monotonically reduced (see Table ). Note that the prolonged protein
half-life due to the complex formation (left column) affects the noise level.
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Figure 4, Ghim & Almaas

Figure 4: Power spectral density (PSD) of fluctuations in protein abundance. The PSD of the MO circuit
clearly displays a power-law behavior. All other model systems with an available cytosolic protein dimer
state (DA1 shown here) develop a plateau in the mid-frequency region regardless of the model details (See
Supplementary Information). As the dimer binding affinity increases, the noise level is further reduced.
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Figure 5, Ghim & Almaas
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Figure 5: Genetic toggle switch. Time series of monomer and dimer copy numbers after steady state has
been reached, where (a) the monomer and (b) the dimer is the functional form of the repressor. The left
(right) column corresponds to the number of the two monomer molecules A and B (dimers AA and BB),
and the initial state is always with species A (red) in high abundance. Note that the switching frequency
depends on the affinity of the dimer state.
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Figure 6, Ghim & Almaas

Figure 6: Distribution of monomer abundance differences between protein species A and B. The asymmetry
with respect to the zero axis is due to the choice of initial state (species A high) and the finite time span of
simulations.
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Figure 7, Ghim & Almaas
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Figure 7: Switching rate of monomers and dimers in a dimeric toggle circuit relative to that of the MO
toggle switch. We have investigated monomeric transcription factor (MTF), dimeric transcription factor
(DTF), and heterodimers with monomeric transcription factor (Het-MTF) for several values of the dimer
binding affinity parameter K1. The MO switching rate is X.
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Tables

Category Symbol Reaction Value (s−1) Ref.

protein dimerization
k1 P1 + P1 → P2 0.001-0.1

[37,38]
q1 P2 → P1 + P1 0.1-1

TF-operator int

k20 P2 + D00 → D20 0.012

[39–41]

q20 D20 → P2 + D00 0.9
k21 P1 + D00 → D10 0.038
q21 D10 → P1 + D00 0.3
k22 P1 + D10 → D20 0.011
q22 D20 → P1 + D10 0.9

RNAp-promoter int

k30 R + D00 → D01 0.038

[42–44]

q30 D01 → R + D00 0.3
k31 R + D10 → D11 0.38
q31 D11 → R + D10 0.03
k32 R + D20 → D21 0.38
q32 D21 → R + D20 0.03

Isomerization v Dx1 → C + Dx0 0.0078 [41]

tsx-tsl elongation & decay

α C → M + R 0.03

[45,46]
β M → P1 + M 0.044
γ0 M → ∅ 0.0039
γ1 P1 → ∅ 7×10−4

γ2 P2 → ∅ 0.7-3.5×10−4

Table 1: Kinetic rates for the positive autogenous circuit.

K1 (nM)
γ2 = γ1/10 γ2 = γ1/2

monomer dimer monomer dimer
500 0.866 0.478 0.826 0.426
20 0.209 0.936 0.230 0.716
1 0.127 0.809 0.132 0.679

Table 2: Relative Fano factors of protein abundance distribution for the autogenous circuit (topology DA1).
Reference value for the monomer-only (MO) circuit is 8.729.
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